

LOCTITE[®] 410™

März 2008

PRODUKTBESCHREIBUNG

LOCTITE[®] 410[™] besitzt die folgenden Produkteigenschaften:

Technologie	Cyanacrylat
Chemische Basis	Ethyl-Cyanacrylat
Aussehen (unausgehärtet)	Schwarz, flüssig ^{LMS}
Komponenten	Einkomponentig - kein Mischen erforderlich
Viskosität	Hoch
Aushärtung	Feuchtigkeit
Anwendung	Kleben
Geeignete Materialien	Metalle, Kunststoffe und Gummi

LOCTITE[®] 410[™] ist ein schlagzäh modifizierter Klebstoff mit erhöhter Flexibilität und Schälfestigkeit sowie ausgezeichneter Beständigkeit gegen Stoßbelastungen.

MATERIALEIGENSCHAFTEN

Spez. Dichte bei 25 °C	1,1
Viskosität, Brookfield - RVT, 25 °C, mPa·s (cP):	
Spindel 3, bei 20 U/min	1.700 bis 5.000 ^{LMS}
Flammpunkt - siehe Sicherheitsdatenblatt	

TYPISCHE AUSHÄRTEEIGENSCHAFTEN

Unter normalen Bedingungen wird der Aushärteprozess durch Luftfeuchtigkeit ausgelöst. Die volle Funktionsfestigkeit wird innerhalb relativ kurzer Zeit erreicht, der Aushärtevorgang dauert aber noch mindestens 24 Stunden, bis die volle Medienbeständigkeit erreicht wird.

Aushärtegeschwindigkeit in Abhängigkeit vom Material

Die Aushärtegeschwindigkeit ist abhängig von der verwendeten Materialoberfläche. Die folgende Tabelle zeigt die Zeit zur Erreichung der Handfestigkeit auf verschiedenen Werkstoffen bei 22°C / 50% rel. Luftfeuchtigkeit. Sie bezeichnet die Zeitspanne, die erforderlich ist, um eine Scherfestigkeit von 0,1 N/mm² zu entwickeln.

Handfestigkeit, Sekunden:

Stahl (entfettet)	60 bis 120
Aluminium	10 bis 30
Neopren	15 bis 25
Nitrilgummi	15 bis 25
ABS	20 bis 50
PVC	50 bis 100
Polycarbonat	30 bis 90
Phenolharz	20 bis 60

Aushärtegeschwindigkeit in Abhängigkeit vom Spalt

Die Aushärtegeschwindigkeit ist abhängig vom Klebespalt. Kleine Spaltweiten ergeben hohe Aushärtegeschwindigkeiten; mit zunehmender Spaltgröße verringert sich die Aushärtegeschwindigkeit.

Aushärtegeschwindigkeit in Abhängigkeit vom Aktivator

Ist die Aushärtegeschwindigkeit aufgrund großer Spalten zu langsam, kann durch Einsatz eines Aktivators die Aushärtung beschleunigt werden. Dadurch kann sich jedoch die Endfestigkeit der Klebung verringern. Zur Überprüfung dieses Effektes wird deshalb die Durchführung von Klebeversuchen empfohlen.

TYPISCHE EIGENSCHAFTEN IM AUSGEHÄRTETEN ZUSTAND

Nach 24 Stunden bei 22 °C

Physikalische Eigenschaften:

Wärmeausdehnungskoeffizient, ASTM D 696, 80×10^{-6} K $^{-1}$ Wärmeleitfähigkeitskoeffizient, ASTM C 177, 0,1 W/(m·K) Glasübergangstemperatur, ASTM E 228, °C 120

Elektrische Eigenschaften:

iona lecite Eigeneenation:	
Dielektrizitätskonstante / Verlustfaktor, IEC	60250:
0,05 kHz	2,3 / <0,02
1 kHz	2,3 / <0,02
1.000 kHz	2,3 / <0,02
Spezifischer Durchgangswiderstand,	10×10 ¹⁵
IĖC 60093, Ω·cm	
Dielektrische Durchschlagsfestigkeit,	25
IFC 60243-1 kV/mm	

FUNKTIONSEIGENSCHAFTEN IM AUSGEHÄRTETEN ZUSTAND

Eigenschaften

Nach 24 Stunden bei 22 °C.

Zugscherfestigkeit, ISO 4587:		
Stahl (sandgestrahlt)	N/mm²	
	(psi)	(3.190)
Aluminium (gebeizt)	N/mm²	. •
	· ,	(2.175)
ABS	N/mm²	-
	(psi)	` ,
PVC	N/mm²	-
	(psi)	` ,
Polycarbonat	N/mm²	-
	(psi)	` ,
Phenolharz	N/mm²	. •
	(psi)	` ,
Neopren	N/mm²	
	\i /	(>1.450)
Nitrilgummi	N/mm²	
	(psi)	(>1.450)
Zugfestigkeit, ISO 6922:		
Stahl (sandgestrahlt)	N/mm²	18,5

(psi)

(2.680)

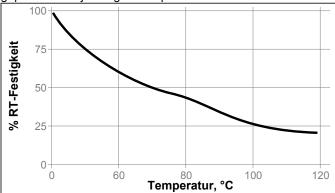
Nach 48 Stunden bei 22 °C Zugscherfestigkeit, ISO 4587:

Stahl (sandgestrahlt) N/mm² ≥15,8 (psi) (≥2.290)

Aushärtezeit 24 Stunden bei 22 °C, anschließend 24 Stunden bei 121 °C, geprüft bei 22 °C

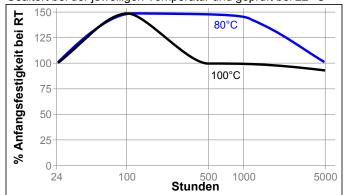
Zugscherfestigkeit, ISO 4587:

Stahl (sandgestrahlt) N/mm² ≥19,3^{LMS} (nsi) (>2,800)


(psi) (≥2.800)

BESTÄNDIGKEIT GEGEN UMGEBUNGSEINFLÜSSE

Nach 1 Woche bei 22 °C. Zugscherfestigkeit, ISO 4587: Unlegierter Stahl (sandgestrahlt)


Temperaturfestigkeit

geprüft bei der jeweiligen Temperatur

Wärmealterung

Gealtert bei der jeweiligen Temperatur und geprüft bei 22 °C

Beständigkeit gegen Medien

Alterungstest wie beschrieben und geprüft bei 22°C.

		% Anfangsfestigkeit		
Medium	°C	100 h	500 h	1000 h
Motoröl	40	85	85	85
Benzin	22	90	70	70
Isopropanol	22	75	75	75
vergällter Alkohol	22	95	95	80
1,1,1-Trichlorethan	22	80	70	50
Freon TA	22	90	90	85
Wärme/Feuchtigkeit 95% rel LF	40	100	100	100

ALLGEMEINE INFORMATION

Dieses Produkt ist nicht geeignet für reinen Sauerstoff und/oder sauerstoffangereicherte Systeme und sollte nicht als Dichtstoff für Chlor oder stark oxidierende Medien gewählt werden.

Sicherheitshinweise zu diesem Produkt entnehmen Sie bitte dem Sicherheitsdatenblatt.

Gebrauchshinweise

- Zur Erzielung optimaler Ergebnisse sollten die Klebeflächen sauber und fettfrei sein.
- 2. Die besten Ergebnisse lassen sich mit diesem Produkt in kleinen Klebespalten (0,05 mm) erzielen.
- 3. Überschüssiger Klebstoff kann mit Loctite[®] Reinigern, Nitromethan oder Aceton entfernt werden.

Loctite Material-Spezifikation LMS

LMS vom 13. Juni 2001. Prüfberichte über die angegebenen Eigenschaften für jede Charge sind LMS-Prüfberichte enthalten ausgewählte, im Rahmen der Qualitätskontrolle festgelegte Prüfwerte, die als relevant für Kunden-Spezifikationen erachtet werden. Darüber hinaus sind umfassende Kontrollmaßnahmen in Kraft, die gewährleisten. hohe Produktqualität gleichbleibend speziellen Spezifikationen unter Berücksichtigung von Kundenwünschen können über die Qualitätsabteilung von Henkel koordiniert werden.

Lagerung

Produkt im ungeöffneten Behälter in trockenen Räumen lagern. Hinweise zur Lagerung können sich auf dem Etikett des Produktbehälters befinden.

Optimale Lagerung: 2°C bis 8°C. Durch Lagerung unter 2°C und über 8°C können die Produkteigenschaften nachteilig beeinflusst werden.

Aus dem Gebinde entnommenes Produkt kann beim Gebrauch verunreinigt worden sein. Deshalb keine Produktreste in den Originalbehälter zurückschütten. Henkel kann keine Haftung für Material übernehmen, das verunreinigt oder in einer Weise gelagert wurde, die von den oben aufgeführten Bedingungen abweicht. Wenn Sie weitere Informationen benötigen, wenden Sie sich bitte an Ihren zuständigen technischen Service oder den Kundenbetreuer vor Ort.

Umrechnungsfaktoren

(°C x 1.8) + 32 = °F kV/mm x 25.4 = V/mil mm / 25.4 = inches µm / 25.4 = mil N x 0.225 = lb N/mm x 5.71 = lb/in N/mm² x 145 = psi MPa x 145 = psi N·m x 8.851 = lb·in N·m x 0.738 = lb·ft N·mm x 0.142 = oz·in mPa·s = cP

Haftungsausschluss

Hinweis:

Die vorstehenden Angaben in diesem technischen Datenblatt (TDS), insbesondere Vorschläge für die Verarbeitung und den Einsatzbereich unserer Produkte, beruhen auf unseren derzeitigen Kenntnissen und Erfahrungen. Auf Grund der unterschiedlichen Einsatzmöglichkeiten und der außerhalb unseres Einflussbereiches liegenden Einsatz- und Arbeitsbedingungen übernehmen wir keine Haftung für die Eignung unserer Produkte für die relevanten Produktionsverfahren unter den konkreten Arbeitsbedingungen sowie die beabsichtigten Verarbeitungszwecke und Ergebnisse. Um eine solche Eignung sicherzustellen empfehlen wir in jedem Fall ausreichende vorherige Eigenversuche und Tests.

Jede aus den Hinweisen in diesem technischen Datenblatt und jede aus sonstiger schriftlicher oder mündlicher Beratung für das vorliegende Produkt resultierende Haftung ist ausdrücklich ausgeschlossen, es sei denn, dass individualvertraglich etwas anderes vereinbart wurde, ein Fall der Verletzung von Leib, Leben oder Gesundheit vorliegt, uns Vorsatz oder grobe Fahrlässigkeit zur Last fällt oder eine Haftung nach zwingendem Produkthaftungsrecht besteht.

Bei Lieferung unserer Produkte durch Henkel Belgium NV, Henkel Electronic Materials NV, Henkel Nederland BV, Henkel Technologies France SAS und Henkel France SA beachten Sie bitte zusätzlich folgendes:

Für den Fall, dass Henkel dennoch, aus welchem Rechtsgrund auch immer, in Anspruch genommen wird, ist die Haftung von Henkel in jedem Fall beschränkt auf den Wert der jeweils betroffenen Lieferung.

Bei Lieferung unserer Produkte durch Henkel Colombiana, S.A.S. findet Folgendes Anwendung:

Die vorstehenden Angaben in diesem technischen Datenblatt (TDS), insbesondere Vorschläge für die Verarbeitung und den Einsatzbereich unserer Produkte, beruhen auf unseren derzeitigen Kenntnissen und Erfahrungen. Wir übernehmen keine Haftung für die Eignung unserer Produkte für die relevanten Produktionsverfahren unter den konkreten Arbeitsbedingungen sowie die beabsichtigten Verarbeitungszwecke und Ergebnisse. Um eine solche Eignung sicherzustellen empfehlen wir in jedem Fall ausreichende vorherige Eigenversuche und Tests. Jede aus den Hinweisen in diesem technischen Datenblatt und jede aus sonstiger schriftlicher oder mündlicher Beratung für das

Jede aus den Hinweisen in diesem technischen Datenblatt und jede aus sonstiger schriftlicher oder mündlicher Beratung für das vorliegende Produkt resultierende Haftung ist ausdrücklich ausgeschlossen, es sei denn, dass individualvertraglich etwas anderes vereinbart wurde, ein Fall der Verletzung von Leib, Leben oder Gesundheit vorliegt, uns Vorsatz oder grobe Fahrlässigkeit zur Last fällt oder eine Haftung nach zwingendem Produkthaftungsrecht besteht.

Bei Lieferung unserer Produkte durch Henkel Corporation, Resin Technology Group, Inc. oder Henkel Canada Corporation, findet Folgendes Anwendung:

Die hierin enthaltenen Daten dienen lediglich zur Information und gelten nach bestem Wissen als zuverlässig. Wir können jedoch keine Haftung für Ergebnisse übernehmen, die von anderen erzielt wurden, über deren Methoden wir keine Kontrolle haben. Der Anwender selbst ist dafür verantwortlich, die Eignung von hierin erwähnten Produktionsmethoden für seine Zwecke festzustellen und Vorsichtsmaßnahmen zu ergreifen, die zum Schutz von Sachen und Personen vor den Gefahren angezeigt wären, die möglicherweise bei

der Handhabung und dem Gebrauch dieser Produkte auftreten. Dementsprechend lehnt die Firma Henkel im besonderen jede aus dem Verkauf oder Gebrauch von Produkten der Firma Henkel entstehende ausdrücklich oder stillschweigend gewährte Garantie ab, einschließlich aller Gewährleistungsverpflichtungen oder Eignungsgarantien für einen bestimmten Zweck. Die Firma Henkel lehnt im besonderen jede Haftung für Folgeschäden oder mittelbare Schäden jeder Art ab, einschließlich entgangener Gewinne.

Die Tatsache, dass hier verschiedene Verfahren oder Zusammensetzungen erörtert werden, soll nicht zum Ausdruck bringen, dass diese nicht durch Patente für andere geschützt sind, bzw. unter Patenten der Firma Henkel lizenziert sind, die solche Verfahren oder Zusammensetzungen abdecken. Wir empfehlen jedem Interessenten, die von ihm beabsichtigte Anwendung vor dem serienmäßigen Einsatz zu testen und dabei diese Daten als Anleitung zu benutzen. Dieses Produkt kann durch eines oder mehrere in- oder ausländische Patente oder Patentanmeldungen geschützt sein.

Verwendung von Warenzeichen

Sofern nicht anderweitig ausgewiesen sind alle in diesem Dokument genannten Marken solche der Henkel Corporation in den USA und in anderen Ländern. Mit ® gekennzeichnet sind alle beim US- Patent-und Markenamt registrierte Marken.

Referenz 1.2